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Hospitalization Time Course

Each 1 hr delay in ICU transfer is associated 
with a 3% increased odds of mortality



Traditional RRT calling criteria

Call if any of these criteria are met:

Threatened airway*

Respiratory rate <5

Respiratory rate >36

Heart rate <40

Heart rate >140

Systolic Blood Pressure <90

Drop in Glasgow Coma Scale >2

Prolonged seizure activity*

4Hillman, Lancet, 2005
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Traditional Statistics: Baseball v. Healthcare
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Rethinking baseball statistics
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Modified Early Warning Score (MEWS)
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Score 3 2 1 0 1 2 3

Respiratory rate (RPM) — ≤ 8 — 9-14 15-20 21-29 ≥ 30

Heart rate (BPM) — ≤ 40 41-50 51-100 101-110 111-129 ≥ 130

Systolic BP ≤ 70 71-80 81-100 101-199 ≥ 200

Temperature (°C) — ≤35 — 35.0-38.4 — >38.5 —

AVPU — — — Alert
React to 
Voice

React to 
Pain

Unresp

Churpek, Chest, 2013
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National Early Warning Score (NEWS)

Churpek, Chest, 2013
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But health care has moved into the digital age



Running a paper-based tool on a computer is like …
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Harnessing big data analytics for IHCA prevention
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Introduction of eCARTTM– linear logistic regression

n=56,649 admission from one hospital Churpek, CCM 2014



Churpek, M, et al. Crit Care Med. 2013

eCARTTM 2

• Cubic spline logistic regression 

• Utilizes 33 EHR variables: vitals, labs, demographics 

• Derived and validated in >250,000 patients from five hospitals 



eCART 2TM – cubic spline logistic regression

n=269,999 admission from five hospitals Churpek, AJRCCM 2014



Accuracy: eCART vs MEWS
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Challenge: $1,000,000 to improve rental suggestions
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Machine learning models are more accurate

Churpek, CCM, 2016
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% of observations detected that are followed by an outcome
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% of observations detected that are followed by an outcome

Logistic regression (linear)

Random Forest
Logistic regression (splines)

MEWS

Model accuracy comparisons

50,000 fewer false positives with random forest
compared to MEWS
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50,000 Fewer False Alarms With Random Forest over MEWS
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Variable importance in the random forest model

22Churpek, CCM, 2016



Random forest visualization: Getting old is bad

40 is not the new 20
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Respiratory rate
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Random forest visualization: respiratory rate is key
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Systemic Inflammatory Response Syndrome (SIRS) criteria
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Most ward patients meets SIRS criteria at some point 
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More specific than SIRS but less sensitive
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When infection is suspected: eCART>MEWS>qSOFA>SIRS

30ATS, 2017



Real-time data-driven decision support in action

High Risk Moderate Average



The University of Chicago Medical Center

617 beds

28,726 inpatient admissions
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Kang, CCM, 2016

Silent phase eCART implementation



Custom implementation at the University of Chicago



eCART imbedded within the EHR



Building in clinical decision support



eCART Imbedded in the Philips Guardian Platform



Summary

Data-driven early warning scores outperform traditional 
expert consensus

Machine learning algorithms further improve detection 
and reduce false alarms 

Pick the best early warning score you can and skip the 
sepsis screening tool

Imbed it into your workflow at the point of care




