Committed to proactively addressing our customers’ security and privacy concerns
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The digitalization of healthcare – opportunities and threats</td>
<td>3</td>
</tr>
<tr>
<td>Philips’ position on cybersecurity</td>
<td>4</td>
</tr>
<tr>
<td>Transparency, compliance and beyond</td>
<td>5</td>
</tr>
<tr>
<td>Product security</td>
<td>6</td>
</tr>
<tr>
<td>Enterprise information security</td>
<td>8</td>
</tr>
<tr>
<td>Privacy</td>
<td>9</td>
</tr>
<tr>
<td>More information</td>
<td>9</td>
</tr>
<tr>
<td>Appendix: Product Security Statement</td>
<td>10</td>
</tr>
</tbody>
</table>
The digitalization of healthcare – opportunities and threats

Today’s healthcare systems are faced with the challenge of an aging population and the rising incidence of chronic diseases, and healthcare is struggling to develop appropriate and affordable care models. COVID-19 has greatly exacerbated these difficulties. Connected healthcare – enabled by connected devices, health apps, and platforms – has unprecedented potential to transform healthcare and enable better health and better care at a lower cost.

The proliferation of millions of connected digital devices allows users and networks to share, search, navigate, manage, compare and analyze a virtually limitless flow of data that can be used to enhance care outcomes.

This digital ‘ecosystem’ has already helped the industry expand the personal and healthcare-oriented smart devices portfolio, sparked innovation, and increased service efficiency.

For example, analysis of electronic medical records and diagnostic information gathered by imaging equipment, monitors, and hand-held personal devices enhances the decision-making powers of professionals and enables a more active role for people to manage their health.

However, the exponential increase in the volume and types of data available also leads to increased vulnerability to cybercrime – healthcare data is the #1 target for cybercriminals and is 10 times more valuable than credit card data alone.1

Personal data within healthcare records is most valuable, as it can be used, for example, for various malicious purposes such as creating false identities or making false insurance claims.

Threats include malicious security attacks via viruses, worms, and hacker intrusions. Perpetrators range from attic-room hackers to organized crime and even nation-states.

The global, exponential rise of ransomware attacks all around us shows that even the largest and most sophisticated organizations can be vulnerable to disruption. In this case, some hospitals even had to divert patients to other clinics.

And now, COVID-19 has brought about a host of new cyber challenges associated with, among other things, the massive increase in remote working and e-commerce.

“Security is job zero.”

Shez Partovi
Chief Innovation & Strategy Officer, Philips

1. Personal data within healthcare records is most valuable, as it can be used, for example, for various malicious purposes such as creating false identities or making false insurance claims.
Philips’ position on cybersecurity

Philips delivers innovations that help consumers and health professionals to connect more easily and to make better-informed decisions. Some of the most powerful and promising opportunities for these innovations involve research into large study groups and big data sets.

This is why security is a priority for Philips. And why every quarter, it features as a topic on the Exco agenda via the Security Steering Committee (SSC). The goal of the SSC is to establish priorities and set the risk appetite for the Security domain, based on recommendations of Group Security, audit findings, and other appropriate inputs. Philips’ strategic and competitive position relies heavily on data, digital innovation, and consumer trust.

Recognizing the concerns of our customers and consumers, and the critical role security plays across today’s interconnected digital ecosystems, Philips is committed to the deployment of a comprehensive security strategy that assures the safety of product, business (enterprise information) and personal (patient) data.

Our security strategy encompasses our people, processes and technology, with the goal of ensuring the confidentiality, integrity and availability of critical data and the systems that house that data.

The concept of Security Designed In (or Security by design in the E.U.) – end-to-end, from design to production to support – is key to the long-term success of our products, services and solutions.

Security – like safety and quality – is a prerequisite for confidence in the Philips brand. Customers and consumers must be able to rely on the security, safety and quality of our products and services. Therefore, we continue to be proactive in highlighting the benefits of connected health technology and continue to invest in secure systems that customers can rely on.

“We must continue to live up to our customers’ expectations of having state-of-the-art security in our products and services.”

Gal Gnainsky
Chief Security Officer, Philips
Transparency, compliance, and beyond

Philips implements security within a heavily regulated medical device industry. Regulatory agencies such as the U.S. Food and Drug Administration (FDA) require that hardware and software releases and changes be subjected to rigorous verification and validation methods to assure that high standard of safety, security, efficacy, quality, and performance are met in all applicable Philips products and services.

We handle all personal data with integrity, in compliance with all applicable privacy regulations of the countries in which we operate.

Philips strives to be open and transparent in reporting and remediating vulnerabilities and has developed a robust Coordinated Vulnerability Disclosure process.

Our strategy involves staying on top of emerging security vulnerabilities and potential external threats, and collaborating with regulatory agencies, industry partners, and healthcare providers, among others, to close security loopholes and implement safeguards.

Philips actively participates in key industry groups that have a security or privacy focus to align our efforts further. We strive to ensure that the appropriate and necessary customer security requirements are included in industry standards, guidelines, and initiatives.

We are a charter member of the U.S. Dept. of Health and Human Services (HHS) Cybersecurity Taskforce. We are strongly involved in the development of (healthcare) security standards through several Standards Development Organizations (e.g., ISO and IEC).

Philips supports the World Economic Forum’s ‘Recommendations for Public-Private Partnership against Cybercrime’.

“By partnering with our customers and being transparent, we keep evolving the security of our products and services, with the goal of ensuring patient safety.”

Dirk de Wit
Head of Philips Product Security
Philips takes the growing risk of cybersecurity threats to our products very seriously. We have long been committed to the ongoing effort to continuously improve our processes and systems to minimize the risk to the patients who depend on our solutions and services.

We are keenly aware of the growing trend of sophisticated cyberattacks across industries and increasingly in healthcare. As hospital networks, clinical databases, medical devices, and personal health monitoring systems become more integrated, the potential for cybersecurity vulnerabilities also grows.

Philips was an early leader in recognizing that effective cybersecurity is no longer about protecting the ‘box’ or an individual product, but a systematic approach that considers where and how devices are employed.

Philips Product Security governs the embedding of security into all products and services during the entire lifecycle, through a Product Security Framework – part of the Philips Excellence Framework. This includes Product Security Risk Assessments, project-independent vulnerability and penetration assessments, specialized product security trainings, and response activities for vulnerabilities identified in existing products and services that are in support.

At Philips, ‘Security Designed in’ is an end-to-end mindset: infusing security principles begins with product design and development through testing and deployment – and followed up with robust policies and procedures for monitoring, effective updates, and, incident response management.

To make our products and services robust against cyber threats requires an unwavering commitment to risk assessment, and adherence to security-based product development. It requires the fast deployment of security-enabling technologies (such as encryption and patch management) and continuous improvement. That is why we have chartered our Product and Solutions Security Program to create, implement and update comprehensive and practical approaches to meet customer requirements.

Key Philips product security initiatives include:

Launch of an industry-advanced Philips Product Security Policy, consisting of policies, procedures, and standards empowering the organization to implement security best practices.

The Policy outlines our strategic organization and procedures for:

- Maintaining a global network of security and privacy professionals operating under the Philips Product Security Policy
- Developing and deploying best practices for our products and services
- Guiding risk assessment and incident response activities relating to potential and identified security and privacy threats and vulnerabilities
- Governing security embedded in products and services during their lifecycle, including risk assessment and response for identified vulnerabilities in products and services
- Supporting our Health Suite platform to align to the latest security standards for cloud environments
- Continuously monitoring for vulnerabilities and validating fixes as part of our Secure Product Development Life Cycle – activities which are supported by our internal Security Center of Excellence

Implementation of security standards that meet, or exceed, current regulatory requirements and industry best practices, including:

- Product security requirements for products and services which are not only aligned with regulatory recommended standards, but even used as the basis for the 80001-2-2 standard.
- Services security aligned with recognized standards such as NIST 800-53, ISO/IEC-27000 series, and HiTrust.
- Creation of customer-facing information such as the industry-standard Manufacturer Disclosure Statement for Medical Device Security (MDS2).
- Support for FDA, MDR, and other national guidances which address cyber security in Medical Devices.

Philips’ Security Center of Excellence shares information with leading cyber security researchers and test facilities around the world, assisting them to rapidly eliminate, reduce, and mitigate cyber threats.
In support of the successful Philips firm registration for the security option of IEC 62304, U.L. performed a comprehensive audit of the Philips Security Center of Excellence. The audit reviewed and verified core Philips Security Center of Excellence product security processes, including security risk management and risk control measures, software security verification planning, change management and continuous improvement, and the Center's laboratory quality management system.

Monitoring and response to threats, vulnerabilities and security incidents:

- Philips continually monitors for new security threats, vulnerabilities, and security incidents, including vulnerabilities identified by the operating system and other by third-party software vendors customers and security researchers.
- Philips Product Security Incident Response Teams evaluate potential security incidents and vulnerabilities and develop response plans as necessary.

Malware protection and patch management:

- Products that support commercially available malware protection are delivered with pre-installed malware protection software or customer documentation, detailing product-specific Philips-approved malware protection parameters.
- Philips products might utilize third-party software, including operating systems like Microsoft Windows and Linux. Impact assessments of these hotfixes by Philips product engineering teams typically begin within 48 hours of Philips' awareness of a new security vulnerability or patch availability.
- Philips launched the Cybersafe program to address the Lifecycle Cybersecurity risk. This includes a range of services that guard against lifecycle threats that come with platforms and devices becoming obsolete.

A Coordinated Vulnerability Disclosure (CVD) to report and address identified vulnerabilities:

- We have designed and implemented a CVD of this kind, which has been singled out as a best practice in the industry.
- Our CVD policy is publicly accessible, with clear communications channels for customers, researchers, and other security community stakeholders.
- The policy encompasses monitoring and response of inbound communications, follow-up engagement, evaluation of vulnerability notifications and status tracking, and alignment with incident response, remediation, and prevention policies.

Philips is committed to continuing to innovate long-term strategic and effective measures to further instill the ethos of medical device product security.

We look forward to continuing this critically important conversation, in order to help meet our goal of improving billions of lives worldwide.
Enterprise information security

Philips’ growth is fueled by innovative technology that our customers have grown to trust and rely upon. Sophisticated internal information systems support the design, development, and production of this technology.

Facing the rapidly growing cybersecurity threat, which targets such technologies and the data housed within, the goal of the Philips Information Security organization is to safeguard enterprise information systems to ensure:

- **Our customer’s trust**: Enhance the Philips brand to be synonymous with safety, quality, and security
- **Our ability to grow**: Prevent the loss of proprietary information to ensure the company’s long-term competitive future
- **Our financial performance**: Protect enterprise assets to prevent negative financial impacts, including loss of customers, revenue, and profit

Information security cannot be solved through technology alone. Comprehensive information security requires focus on three domains: People, Processes, and Technology. The Philips Information Security organization implements controls across these three domains to guarantee the following:

- **Confidentiality**: only those who should have access can retrieve data
- **Integrity**: information cannot be modified without detection
- **Availability**: information can be accessed when needed

Philips is meeting – and will continue to meet – the challenges of an evolving threat landscape to secure enterprise information systems and increase customer trust. The Philips Information Security organization will continue to focus investments on retaining top-tier cybersecurity talent, enhancing cybersecurity tooling and capabilities, and integrating security best practices in everything we do.

“Digitization allows us to connect our products and services to Philips’ enterprise systems and subsequently to those of our suppliers and partners, for a seamless flow of information.”

Stef Hoffman
Chief Information Security Officer, Philips
Privacy

At Philips we have a longstanding commitment to respect the privacy of our customers, consumers, and other individuals we deal with, such as patients. Being transparent about how we deal with personal data helps to build trust. As we transform into a digital company, complying with our privacy standards is increasingly important to achieve that commitment. To this end, we have adopted Data Principles, one of which relates to privacy.

With our focus on health technology, data privacy and security have become strategically vital, as health data is among the most sensitive types of personal data. Our competitive position relies heavily on the use of this data and public trust is paramount. Our commitment to privacy is enshrined in our Data Principles. Through these principles, we commit to handling all personal data with integrity in compliance with all applicable privacy regulations of the countries in which we operate.

Privacy and data protection are an integral part of our General Business Principles whereby we submit ourselves to several commitments such as:

- The implementation of Binding Corporate Rules (BCRs), also known as the Philips Privacy Rules, that provide a baseline for privacy protection within Philips worldwide and allow international data transfer between Philips group companies
- Implementation of a privacy program and governance structure which embeds privacy and data protection in the company
- Limiting the collection of personal data to what is strictly necessary
- Informing individuals about the processing of their personal data
- Ensuring individuals can exercise their data subject rights globally
- Taking appropriate steps to ensure the data is accurate and up-to-date
- Protecting personal data using appropriate security safeguards

As reflected in our BCRs, suppliers that process personal data on behalf of Philips must also agree to comply with stringent requirements.

Philips is committed to high security standards and responsible data stewardship through the principles of ‘privacy by design’. This approach embeds privacy and data protection controls throughout the entire data life-cycle, from the early design stage to deployment, collection, use, and ultimate data disposition and disposal.

To drive the advances in healthcare made possible by big data, we must foster trust and explain the value to the individual. We need to ensure the fundamental right to privacy and data protection is upheld. Through our commitment to high security standards and responsible data stewardship we can decrease fear and doubt and offer even greater value to consumers through ongoing innovation.

More information

Philips Product Security Information ›
Philips Privacy Policy web page ›
Philips Cybersecurity protection and upgrade services ›
Table of contents

Background and organization
12

Digital revolution
13
The Connected/Interconnected Ecosystem
13
Internet of Things (IoT)
13

Key elements of the Philips Product Security Program
14
Governance
15
Testing
15
Coordinated Vulnerability Disclosure
16
Software bill of materials
16
Maturity Roadmap
16

Philips product security in action
17
Product Security Assessment/Product Design
17
Monitoring and Response to Incidents and Vulnerabilities
17
Philips Secure Development Lifecycle (SDLC) – Security by Design
17
Philips Open Source Governance and Compliance Program (Governance of SBOM)
18
Operating Systems and Patch Management
19
Malware Protection
19
Philips Product Security Website
19
Medical Device MDS² Forms
20
Customer Role in Product Security Partnership
20
Policies on Third-Party Software and Patching
20
Philips Remote Service
21
Philips Product Innovations and Solutions in a Changing World
21
Product Security Statement

This paper summarizes the Philips position on securing our products, services, applications, and systems and describes our processes for providing products with Security Designed In.

Background

We at Philips recognize that the security of Philips healthcare, personal health, and home consumer products and services are an important part of your security planning. We are dedicated to helping you maintain the confidentiality, integrity, and availability of personal data, business data, and the Philips hardware and software products that create and manage this data.

Threats to the security of devices and personal and healthcare information continue to increase. These threats include malicious security attacks via viruses, worms, and hacker intrusions. Governments around the world have enacted legislation to criminalize many of these cyberattacks and to protect personal data (e.g., US-HIPAA, Canada-PIPEDA, EU GDPR, Japan-PIPA, and others).

To fulfill our commitment to security, we at Philips maintain a global program to:

- Develop, deploy, and support advanced security features for our products and services
- Manage security events in the field. Philips participates in industry and government collaborations to help ensure product innovations and clinical information is produced and available at the highest level of quality, availability, and confidentiality.

We implement security within a heavily regulated medical device industry and global climate. Government regulations (e.g., those of the U.S. Food and Drug Administration and the Chinese National Medical Products Administration) require that hardware and software changes be subjected to rigorous verification and validation to ensure high safety and performance standards are met in all Philips medical devices. Likewise, Philips strives to ensure that same high standard for personal health products, home innovations, and services.

Organization

Philips operates under a global Product Security policy governing design-for-security in product and services creation, as well as risk assessment and incident response activities for vulnerabilities identified in existing products. The Head of Global Product Security oversees the governance and compliance of this policy, reporting directly to the Philips Head of Security. Under direction of the global Product Security Program, Philips has instituted and matured capabilities to include global monitoring, case escalation, rapid response, and full management visibility to security issues.
Digital revolution in healthcare

The Connected/Interconnected Ecosystem

The proliferation of millions of connected digital devices allows users and networks to share, search, navigate, manage, compare and analyze a virtually limitless data flow. This digital ‘ecosystem’ has helped the industry expand the portfolio of personal and healthcare oriented smart devices, sparked innovation, and increased service efficiency. It has also dramatically escalated the potential of exposure to vulnerabilities and cyberattacks.

Interconnected, interoperable, and remotely controlled products and services in our industry are burgeoning. Some areas that present as particularly vulnerable are:

- Provider networks
- Personal health devices
- Remote services
- Sensitive data storage
- Sensitive data on-the-move

The protection of customer networks and personal data within the ecosystem is of utmost importance.

To address this challenge, OEMs such as Philips must take a strategic and integrated view of product security and establish a comprehensive risk-based cybersecurity program.

Internet of Things (IoT)

The ‘Internet of Things’ (IoT) paradigm envisions the pervasive interconnection and cooperation of smart things over the current and future Internet infrastructure. This revolution in data exchange empowers people to live healthier lives by using connected devices such as tablets, wearables, and hand-held devices to control their health in a highly personalized manner. For example, Philips in collaboration with partnerships in the industry, developed our HealthSuite Platform, which enables IoT devices and applications to operate in conjunction with deep sets of data. HealthSuite Platform offers a native cloud-based infrastructure and the core services needed to develop and run a new generation of connected, secure healthcare devices and applications.

Analysis of electronic medical records and diagnostic information gathered by imaging equipment, monitors, and hand-held personal devices enhance professionals’ decision-making powers and enable a more active role for patients to manage their personal health. These innovations are transforming not just the care of the chronically ill but also those who want to remain healthy.

Next generation mobile apps, services, and hardware that operates in this rapidly evolving environment will undergo rigorous risk analysis and security penetration testing. New devices will be protected with a secure defense framework that identifies users, authorizes consent, and tracks user activity to ensure data protection.
In a connected, interoperable healthcare ecosystem, the potential for exposure to vulnerabilities and attack is significant. This reality prompts Philips to devote extensive resources to mitigate such threats. Years of work as an industry leader in product security capabilities and product innovation suggest there are five essential components to a successful security program.

1. Governance
2. Testing
3. Coordinated Vulnerability Disclosure
4. Software bills of materials
5. Maturity Roadmap

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
</table>
| **Governance** | • Organizational alignment
 | • Thought Leadership (Sharing, Learning)
 | • Enforce Key Product Security Risk Drivers
| **Testing** | • Penetration Testing - Ethical Hackers
 | • Integrated into Risk Assessment, Secure Development Lifecycle (SDLC), On-Boarding, and Maintenance
 | • Standardized Use Cases and tooling for common and comparable results |
| **Coordinated Vulnerability Disclose** | • Integrated into Policy and Customer Complaint Handling Processes
 | • Leverage effective Incident Response Management Processes |
| **Software Bills of Materials** | • Continuously monitor Software Bill of Material (SBOM) for new vulnerabilities and security SW updates
 | • Training and practices integrated across the SDLC continuum (pre-market, post-market) |
| **Maturity Roadmap** | • Product Legacy and SBOM Lifecycle Management
 | • Continuous Innovation – Assessment and Monitoring of the program |
Governance

The alignment of executive leadership within Philips secures the ‘buy-in’ necessary to move forward successfully. This in-house team provides continuous oversight, developing strategies and structure to implement the successfully critical attributes of the Product Security Program, including policies, risk assessments, security testing, communications, stakeholder requirements, incident management, metrics, and a maturity roadmap for continuous improvement.

The team coordinates the efforts of external players across the cybersecurity ecosystem (customers, vendors, regulators, standards organizations, industry groups, and researchers, among others) through ongoing dialogue. This effort is highly productive in building key relationships and promoting industry best practices toward the safety and security of personal and medical devices. For example, Philips is one of two member medical device manufacturers participating in the U.S. Health and Human Services (HHS) Cybersecurity Taskforce.

Governance of a comprehensive risk management strategy is core to the Philips Product Security Program and mission. That strategy governs a holistic risk management process to prevent, mitigate, and/or remediate pre-market and post-market product security risks. Philips emphasizes that consistent adoption of strategies to address key areas of assessed risk is essential to enable safe and secure products and services and reduce potential exposures to data breaches, third party vulnerabilities, and sanctions from regulatory institutions and customers.

Testing

A medical devices industry first, Philips has established a Security Center of Excellence (SCoE) to develop products which are ‘cyber-resilient’. At the SCoE, a dedicated team of ethical hackers, or ‘security ninjas’, engages in continuous vulnerability and penetration testing to proactively identify product weaknesses. This security-focused testing complements the security testing done by the product engineering teams and is integrated in the secure development lifecycle (SDLC).

Philips product and services security testing covers a wide variety of cybersecurity tasks, including:

- Security vulnerability and penetration testing
- Security risk assessments
- Security source code analysis
- Third-party vendor engagements
- U.S. DoD (U.S. Department of Defense) technical product security testing
- Security training tailored to unique roles, including product architecture, development, and testing
- Tool validation
- Tool evaluation
- Threat monitoring
- Metrics for product development
Coordinated Vulnerability Disclosure

The development of a coordinated vulnerability disclosure program began with creating a Coordinated Vulnerability Disclosure Policy to reassure customers that reasonable effort will be made to repair any vulnerabilities and prevent future damage.

Likewise, it is important to handle all security incidents with a sense of urgency and sensitivity. A formal incident response management process has been implemented, which includes documenting all communication, opening a corrective action program, developing a solution, and authoring an incident report.

Confirmed vulnerabilities result in a direct report into government agencies such as the U.S. DHS (ICS-CERT program) and are then communicated to the public. The U.S. FDA pre-and post-market 'Management of Cybersecurity in Medical Devices’ guidelines (12/28/16), provide direction on key principles that are globally applicable in practice and cooperation with other governmental entities and processes. Transparency is key.

Philips was the first major medical device manufacturer to design and implement a Coordinated Vulnerability Disclosure Policy and remains today as a globally recognized industry leader with fully developed and operationally matured processes behind our policy.

When public media attention is drawn to security incidents, Philips is often singled out as a manufacturer who’s prepared to address complex issues.

“Philips was the only baby monitor manufacturer praised for responding to vulnerability warnings.”

Forbes

“We applaud Philips’ commitment to fixing this vulnerability and their established protocol for handling incoming product vulnerabilities.”

ARS Technica

“Philips has been ‘the most responsive’ of all the companies in addressing the flaw.”

Wall Street Journal

Related: see the section for “Monitoring and Response to Incidents and Vulnerabilities”.

Software Bill of Materials (SBOM)

Companies (Philips included) reliant on the integration of third-party software open themselves to hidden risks posed by programming code that is not their own.

To prepare for pending legislation on this topic globally, creating a Software Bill of Materials (SBOM) for every product is essential. This identifies and describes the open source and third-party software components and allows organizations to respond to possible security vulnerabilities/breaches quickly.

Philips is taking the industry lead to integrate an SBOM into every Philips product’s secure development life-cycle (SDLC). We will implement processes and procedures to ensure the integrity of any software, firmware, or product developed for our customers.

Related: see the section for “Philips open Source Governance and Compliance (SBOM Program)”.

Maturity Roadmap

Integrating product security into product development and consistently deploying product security processes across the portfolio sets the stage for a manageable future. The purpose and intent of a maturity roadmap is to measure and improve Philips’ processes and organizational capabilities. Ultimately our desire is to attain improved levels of product security maturity with new product introductions, ongoing service operations, and post-market life-cycle management.

As part of this effort, Philips is focused on a comprehensive product life-cycle management security strategy. It begins with an assessment and monitoring of installed base/legacy products to detect O.S. obsolescence, incompatibilities, and hardware/firmware vulnerabilities then allow for ongoing, timely maintenance/updating and life-cycle scheduling.

Philips has also put in place a new Windows OS policy, which ensures that in the future, for all systems in the installed base for which Philips guarantees support, customers have an option to get to a supported Windows OS.
Philips proactively conducts internal Product Security assessments to identify potential security weaknesses. Armed with this information, our engineering teams often define configuration changes and re-engineering efforts that will harden the system against outside threats. The same information also drives security design requirements for new products, integrated into Philips secure development life-cycle processes for all products and services. The Philips Product Security Policy requires Security Designed In objectives as part of all new product creation efforts.

Monitoring and Response to Incidents and Vulnerabilities
Product engineering groups within Philips monitor new security vulnerabilities on an ongoing basis, including those identified by third-party software and operating system vendors and those reported from healthcare enterprises. A global network of Product Security Officers and their teams collect and manage information and address identified vulnerabilities that may affect Philips products and solutions.

When risk events, cyber-security attacks, or incidents are detected or reported, Philips Product Security Incident Response Teams evaluate each real or potential incident with an explicit threat/vulnerability/risk assessment, coordinate a unified response with teams across Philips, communicate status, and follow through to investigate and address security events in accordance with our Product Security policy framework.

Philips Secure Development Lifecycle (SDLC) – Security by Design
Industry trends have shown that cyber-attacks are moving to the application layer of products and pose a significant threat to customers and patient information over the Internet of Things (IoT). According to data collected by the Internet Storm Center, over 70% of attacks on networks are against the application layer. To strengthen the resiliency of our products and services, Philips strengthens our product realization process with capabilities, components, and techniques, including practices that align to ISO standards such as ISO 27034, a practical and well-tested means of incorporating security and Privacy within the software development process.

Leveraging this methodology, requirements and controls are addressed at each phase of the secure development life-cycle, including the use of Product Security Risk Assessment (PSRA), privacy compliance assessment (e.g. DPIA) processes, privacy by design practices, static code analysis, third party Software Bill of Materials (SBOM) analysis, ethical penetration testing, and continuous product security training across the Philips organization. While tools and processes are key to the Philips SDLC, Security by Design is a mindset that requires an end-to-end approach that begins with architecture and high-level design, which progresses through to coding, testing, and post-market support.
Philips Open Source Governance and Compliance Program (Governance of SBOM)

Most software built today incorporates open source and other commercial off-the-shelf components. These third-party components may introduce vulnerabilities into a product to which the manufacturer is unaware. A ‘software bill of materials (SBOM)’ carefully documents the tools used to build an application and identifies exactly what third-party components are included. This helps security organizations respond quickly and precisely to potential risks.

Many manufacturers do not have an accurate bill of material listing for each of their products. Without an accurate listing, they do not understand the vulnerabilities associated with the product components. Without SBOM product information and faced with a vulnerability issue, there is no easy way to identify the affected code and introduce a solution. Hence, an agile response is exceedingly difficult.

The U.S. President issued Executive Order 14028, “Improving the Nation’s Cybersecurity.” The executive order seeks to assure the security of product software. Additionally, the executive order requires government agencies to obtain software BOMs for any new products they purchase.

As a result of this new executive order 14028, requirements are being adopted for the governance and disclosure of security vulnerabilities or defects for open source and third-party software, such as those adopted by the U.S. Veterans Administration and defined in the U.S. National Institute of Standards and Technology 800-53 (NIST 800-53).

The U.S. Veterans Administration and defined in the U.S. National Institute of Standards and Technology 800-53 (NIST 800-53).

NIST 800-53 is a U.S. publication that recommends security controls for federal information systems and organizations and documents security controls for all U.S. federal information systems, except those designed for national security.

Philips is out in front of these requirements with our SBOM governance program which includes the following three phases:

- **Deploy** – Generate the Software Bill of Materials on all software driven products that are developed by Philips. This is being accomplished by deploying SBOM tools across all business groups.
- **Integrate** – Integrate SBOM tooling and processes into the software development/build process. Inspect the source code and/or binaries of each product.
- **Report** – Create a Security Risk summary of each product. Then correlate that summary with the known security vulnerabilities associated with identified components.
Identifying and describing open source and third-party software components within a product portfolio allows for quick response to possible security vulnerabilities/breaches. Following are seven key elements associated with a successful SBOM program:

1. Document SBOM requirements
2. Integrate SBOM into the software development life-cycle process, including updating and maintenance
3. Identify SBOM vulnerabilities and license issues and incorporate findings into security risk assessments, and remediate as per the risks assessed
4. Include SBOM in all relevant product documentation
5. Monitor SBOM continuously for new vulnerabilities and security software updates
6. Update SBOM in relevant product documents and security risk assessments
7. Adjust overarching SBOM requirement as necessary based on changes in government regulation

The Philips Product Security SBOM process will be integrated into the system development life cycle for each of our products in accordance with the Philips Product Security policy. New systems will meet these expectations and be prepared for future upgrades. Legacy systems with security issues will be addressed with upgrades, network mitigations, or replacement.

Operating Systems and Patch Management

Some Philips products use third party commercial computer Operating Systems (O.S.) like Microsoft Windows. We continuously monitor relevant vendor and industry/media security announcements and perform risk assessments on current medical devices affected by newly discovered vulnerabilities.

Microsoft releases information on M.S. Windows security patches (hotfixes) on a regular basis. Impact assessments of these hotfixes by Philips’ product engineering teams typically begin within 48 hours of Philips’ awareness of a new security vulnerability or patch availability. Following assessment, an indication of Philips’ response for affected products is available to users typically within 5 to 12 business days for most products.

Depending on the nature of the threat and the affected product in question, a validated “fix” or software update may be released. If the recommended response requires a change to the system software of a medical device, a software update may be released. Information concerning the availability and applicability of such updates is likewise available via Philips’ standard service channels and, for some products, can be found via our website.

To provide you with this important information in a timely and convenient manner, the Philips Product Security website features access to regularly updated product-specific vulnerability information. This information is formatted into simple, product-specific tables listing known software vulnerabilities and their current status, recommended customer action, and general comments. Please visit the [Philips Product Security website](#) to access this information. If you have any questions regarding the vulnerability tables, patch management, or other product security interests, contact Philips by email productsecurity@philips.com or directly contact your Philips Field Service Engineer.

Philips addresses the risk of an obsolete O.S., by providing an array of solutions based on the product. Products can either be upgraded to the latest O.S., replaced by more recent products (depending on the age of the product), or additional security measures can be provided, such as network isolation, whitelisting, to mitigate the risk.

Malware Protection

To deploy and maintain the effective operation of your equipment, Philips products are delivered to operate within compliance of the specific system and security specifications. These product specifications may include device configuration, network, operating system, and/ or software requirements for malware protection. Please refer to your specific product documentation or instructions for use for more information.

Philips Product Security Website

Philips provides a variety of information resources on our [Product Security website](#), including Security Bulletins, FAQs, vulnerability information, links to industry resources, product security white papers, and other Product Security highlights.
Medical Device MDS2 Forms
To assist our customers in meeting their U.S. HIPAA obligations under the 2005 Security Rule, Philips has taken the lead in publishing Product Security information. Philips has taken many steps to enhance the security of our medical devices in response to customer requests. When used properly, the security features of Philips healthcare products make it easier for users to meet their obligations to ensure the confidentiality, integrity, and availability of patients’ health information. In light of the increased focus on medical device security and compliance with the HIPAA Security Rule in the U.S., the Healthcare Information and Management Systems Society (HIMSS) created a standard “Manufacturer Disclosure Statement for Medical Device Security” (MDS2). The MDS2 is intended to supply healthcare providers with important information that can assist them in assessing and managing the vulnerabilities and risks associated with electronic Protected Health Information (ePHI) created, transmitted, or maintained by medical devices. Philips is aligned to the latest version (2019) of the MDS2 template.

Philips MDS2 forms are available to customers via InCenter, at:
https://incenter.medical.philips.com/

Customer Role in Product Security Partnership
We recognize that the security of Philips products needs to be an important part of your security-in-depth strategy. However, protection can only be realized if you implement a comprehensive, multi-layered strategy (including policies, processes, and technologies) to protect information and systems from internal and external threats. Following industry-standard practice, your strategy should address physical security, operational security, procedural security, risk management, security policies, and contingency planning. The practical implementation of technical security elements varies by site and may employ a number of technologies, configurations, and software solutions. As with any computer-based system, protection can include firewalls, network segmentation, and/or other security devices between the medical system and your institution’s network. Such perimeter and network defenses are essential elements in a comprehensive medical device security strategy. Any device connected to an internal or external network should be made with appropriate risk management for product effectiveness and data and systems security.

Policies on Third-Party Software and Patching
Philips sells highly complex medical and personal devices and systems. Only Philips-authorized changes are to be made to these systems, either by Philips personnel or under Philips explicit published direction. With the current rise in security threats, Philips product engineering groups work to qualify security-related third-party software and solutions for selected equipment.

Moreover, we continue to treat patient and operator safety as our primary concern. We are required to follow regulatory and quality assurance procedures to verify and validate modifications to our medical devices. As with other medical devices, any “software only” Philips products should be used only on computers and networks that are properly secured in accordance with your Philips product documentation, service agreements, and instructions for use. We strongly suggest that your security staff monitor system and application vulnerabilities and keep the operating system and other installed software running on your system patched and up-to-date.

Philips sells a broad range of devices, from consumer lifestyle products and home monitoring systems to image acquisition and viewing systems, IT-oriented PACS to 24/7 life-critical systems, and real-time patient monitors. The diverse nature of our product portfolio has led us to support a wide range of solutions, including the installation and maintenance of third-party software on our systems. Please contact Philips for more specific information on your particular product.

General Case
Most Philips equipment does not permit third-party software installation of any kind by the customer (e.g., anti-virus scanners, office productivity tools, system patches, on-platform firewalls, etc.) unless documented by Philips as an operating specification requirement or prior written consent is attained. Unauthorized modifications to Philips products could void your warranty and alter the regulatory status of the device. Any resulting service required from unauthorized modification is not covered under our service agreements. Such unauthorized modifications can affect the performance or safety of your device in unpredictable ways. Philips is not responsible for equipment that has been subject to unauthorized modification.
When Philips authorizes the use of third-party software, system patches, or upgrades, the authorized installation is typically carried out by (1) Philips at the time of manufacture or installation or, (2) a post-installation Philips-qualified Service Engineer.

Exceptions
Philips may permit in certain circumstances the installation or enabling of third-party software directly by a Philips-qualified Service Engineer, but always under explicit published guidance of Philips and only to be applied to the particular system and version covered by the Philips written authorization.

Prior to considering the install or enablement of any third party software on a Philips product, you should contact your local Philips service representative to determine if your particular product has been qualified for that specific software and, if so, what restrictions may apply.

It is essential to understand that any unauthorized modification of a Philips medical device or system (e.g., product firewall changes, software patches, security software, utilities, games, music files, other software programs, etc.) can adversely affect system performance or safety in unpredictable ways, thereby depriving your staff and their patients of protections afforded by Philips, regulatory, and quality requirements. Possible detrimental side effects of these installations or modifications might include:

1. Opening or widening of pathways could allow a compromise of access or control
2. Introduction of viruses, spyware, Trojans, backdoor access, or other remote agents
3. Installation of unauthorized updates that could lead to product and system vulnerabilities

Should you suspect or know of any unauthorized modifications to your Philips product or solution, you should immediately report it to Philips Customer Services or your Field Service Engineer who will assist you in determining the appropriate action.

Philips Remote Service
Philips has created a global, web-based Philips Remote Services network (PRS) connects many of your Philips systems to our advanced service resources. This state-of-the-art design provides your equipment with a single point-of-network access to on-site Philips equipment using Virtual Private Network technologies. This secure tunnel approach was developed to provide a best-in-class remote service solution that secures the connection through explicit authorization and authentication control with encryption of all of the information in the service session.

Philips Product Innovations and Solutions in a Changing World
In line with the need to increase security of our products, Philips continues to examine and re-engineer existing products to best accommodate the requirements of our security-minded customers. We are deeply engaged in creating the products of tomorrow based on fundamental security principles.

We will continue to work closely with providers, I.T. organizations, and consumers to provide flexible solutions to today’s problems even as we create new Security Designed In products.

1. Why Medical Records are 10 Times More Valuable Than Credit Card Info | CyberPolicy
2. [1505.07683] Privacy in the Internet of Things: Threats and Challenges (arxiv.org)
3. Health technology cybersecurity - News | Philips
4. Philips Healthcare | Product Security
5. How the Internet of Things is revolutionizing healthcare - Blog | Philips
6. Security and Privacy Controls for Information Systems and Organizations (nist.gov)

Thank you for your continued interest in the many innovative solutions provided by Philips.