Saving Face

Strategies to reduce skin breakdown during noninvasive ventilation (NIV) for patient care

Robert S. Campbell, RRT, FAARC Hospital Respiratory Care, Philips Healthcare, Andover, MA May, 2017

Objectives

- Define the key factors that can lead to mask-related NIV complications
- Define ways to manage and reduce the potential of skin breakdown during NIV
- Provide ways to improve patient care by reducing the potential of skin breakdown
- Discuss best practices for initial patient assessment and documentation
- Offer strategies for providing better patient comfort

NIV is the standard of care

"It is no exaggeration to say that NIV has revolutionized the treatment of acute respiratory failure."¹

PHILIPS

Centers for Medicare & Medicaid Services

CMS classified Stage III and IV pressure ulcers as a preventable Hospital Acquired Condition (HAC)²

These are no longer reimbursed by current insurance guidelines¹

¹ Epstein, Scott K., M.D. Noninvasive ventilation to shorten the duration of mechanical ventilation; Respiratory Care, January, 2009, Vol. 54 No. 1 ² Gregoretti. C., Confalonieri, M., Navalesi, P., Squadrone, V., Frigerio, V., Frigerio, P., Beltrame, F., Carbone, G., Conti, G., Gamna, F., Nava, S., Calderini, E., Skrobik, Y., Antonelli, M.Evaluation of patient skin breakdown and comfort with a new face mask for non-invasive ventilation: a multi-center study. Intensive Care Medicine 2002; 28:278-284

How are pressure injuries impacting your facility?

- Difficult to manage
- Costly
- A cause for litigation

Requires a multidisciplinary approach, from Administration to the bedside clinician.

What is a pressure injury?

A localized injury to the skin and/or underlying tissue usually over a bony prominence, as a result of pressure, or pressure in combination with shear.

Mask rotation practices

By rotating mask designs, the pressure points are redistributed to help reduce the potential for skin breakdown

Polling question

V60

RESPIRONICS

Patient Assessment

Wound Reduction

Incidence of skin breakdown

- Skin breakdown "... even after only a few hours of ventilation, is a frequent complication, ranging from 2-23%"¹
- "In one study, where patients were continuously ventilated with a face mask for more than 48 hours, this percentage reached 70%"²

•¹ Epstein, Scott K., M.D. Noninvasive ventilation to shorten the duration of mechanical ventilation; Respiratory Care, January, 2009, Vol. 54 No. 1 ² Armour-Burton, T., Field, W., Outlaw, L., Deleon, E.. The Healthy Skin Project: Changing Nursing Practice to Prevent and Treat. Critical Care Nurse, Vol 33, No. 3, June 2013

Incidence of skin breakdown

- Localized areas of tissue necrosis
- Develop when soft tissue is compressed between a bony prominence surface for an extended period of time

Most common on bridge of nose¹

Extreme cases involve surrounding areas, like over the nose but also on the chin

¹ Epstein, Scott K., M.D. Noninvasive ventilation to shorten the duration of mechanical ventilation; Respiratory Care, January, 2009, Vol. 54 No. 1

What causes a pressure injury?

The primary causes are³:

- Shearing forces:
 - Cause stretching, kinking, and tearing in the subcutaneous tissues
 - Lead to deeper tissue necrosis
- Excessive compressive pressure (CP)
 - CP should be < diastolic BP</p>
 - CP should be < capillary BP (32-45 mmHg)

Risk increases with³:

- Duration of pressure exposure
- Pressure over bony prominences

Shearing forces

Skin anatomy and physiology⁴

- Epidermis
 - The outer layer of skin sheds every 21 days
- Dermis
 - The middle layer of skin contains nerve endings, blood vessels, oil glands, sweat glands
 - collagen and elastin
- Hypodermis
 - The subcutaneous layer of skin; fat and connective tissue that houses larger blood vessels and nerves

Pressure injury - Stage 1⁴

- Intact skin with non-blanchable redness
- A change in the skin temperature (warm or coolness)
- Tissue consistency has a firm or boggy feel
- Possible patient sensation pain or itching

© 2015, NUCLEUS Medical Media, Inc

Pressure injury - Stage 2⁴

- Partial thickness loss of skin involving epidermis and/or dermis
- Presents as a intact or open serum filled blister or shallow crater

© 2015, NUCLEUS Medical Media, Inc

Pressure injury - Stage 3⁴

- Full thickness tissue loss involving damage to or necrosis of subcutaneous tissue
- May extend down to, but not through, underlying fascia
- Presents as a deep crater which may include undermining or tunneling

© 2015, NUCLEUS Medical Media, Inc

Pressure injury - Stage 4⁴

- Full thickness tissue loss with extensive destruction
- Exposed bone, muscle or tendon
- Some slough or eschar may be present

© 2015, NUCLEUS Medical Media, Inc

Pressure injury - Stage 4⁴

⁴ National Pressure Ulcer Advisory Panel (NPUAP) www.npuap.org.

Risk factors for hospital-acquired pressure ulcers⁵ (HAPU)

• Age

- Trauma from friction and shearing forces
- Poor nutrition
- Low blood pressure (low perfusion)
- Extended use of NIV

Considerations for mask selection

⁶ Squardone, E., Frigerio, P., Fogliati, C., Gregoretti, C., Conti, G., Anonelli, M., Costa, R., Baiardi, P., Navalesi, P. Noninvasive vs invasive ventilation in COPD patients with severe acute respiratory failure. Intensive Care Med (2004) 30: 1303-1310.

Clinical considerations

Clinicians remove and reposition masks many times per day for⁷

- Oral care
- Medication
 administration
- Hydration
- Therapy break

Mask design considerations⁸

- Estimated length of use
- Compatibility with NIV device
- Mask safety features
 - Quick release clips
 - Anti-asphyxia valves
- Facial features
 - Skin condition
 - Facial abnormalities
- Elbow / Ventilator compatibility
 - EE
 - SE

Patient considerations⁹

- Mouth breather
- Claustrophobic
- Level of consciousness
- Cooperation
- Facial structure
- Elbow style
- Size matters

Choosing the right mask for your patient

- Mask types
- Headgear selection
- Soft, self-sealing cushions
- Anti-asphyxia features

Polling question

Initial assessment

- All patients should be assessed for skin integrity upon admission
- Assessment of risk factors for HAPU should also be determined on admission and prior to NIV initiation
- Assess the patient using the Braden scale
- Relative risk should determine monitoring frequency and prevention strategy

Polling question

Patient assessment

DHIIDS

Best practices

Saving Face Strategies to reduce skin breakdown during NIV for patient care

Visit www.thinkniv.com

• In literature⁸

Noninvasive ventilation masks are associated with pressure injuries under the mask

Sampling

In literature⁸

Results

- 20% of patients in the oro-nasal masks developed a pressure injury
- 2% of patients in the full-face masks developed a pressure injury
- Comfort scores significantly lower in the Full-face mask group

Conclusion:

Full-Face mask resulted in significantly fewer pressure injuries and was more comfortable for patients.

• NIV advantages over invasive

Application

- Avoid Intubation
 - Patient discomfort
 - Upper airway trauma

Ventilator acquired pneumonia (VAP)⁹

- Intubation is associated with GI bleeding
- Less chance of barotrauma
- Decreases work of breathing
 - Improves alveolar ventilation
 - Improves gas exchange
 - Counterbalances intrinsic PEEP
 - Improve patient-ventilator synchrony

Epstein, Scott K., M.D. Noninvasive ventilation to shorten the duration of mechanical ventilation; Respiratory Care, January, 2009, Vol. 54 No. 1 Hess, D. Noninvasive Positive Pressure Ventilation and Ventilation Associated Pneumonia. Respiratory Care, July, 2005, Vol. 50. No. 7924-931

• NIV advantages over invasive

Oral patency

- Preserves efficiency of cough and secretion clearance
- Allow speech, allowing the patient to communicate
- Preserves ability to swallow
- Reduces need for NG
 tube

PHILIPS

Summary - Helping reduce the potential for pressure injuries

- Assess the patient
- Select the proper mask(s) design
- Rotate designs to redistribute pressure points
- Manage mask leak no less than 7 L/min
- Perform skin care and early interventions
- Conduct continuing education

